Sulfated steroids as natural ligands of mouse pheromone-sensing neurons.

نویسندگان

  • Francesco Nodari
  • Fong-Fu Hsu
  • Xiaoyan Fu
  • Terrence F Holekamp
  • Lung-Fa Kao
  • John Turk
  • Timothy E Holy
چکیده

Among mice, pheromones and other social odor cues convey information about sex, social status, and identity; however, the molecular nature of these cues is essentially unknown. To identify these cues, we screened chromatographic fractions of female mouse urine for their ability to cause reproducible firing rate increases in the pheromone-detecting vomeronasal sensory neurons (VSNs) using multielectrode array (MEA) recording. Active compounds were found to be remarkably homogenous in their basic properties, with most being of low molecular weight, moderate hydrophobicity, low volatility, and possessing a negative electric charge. Purification and structural analysis of active compounds revealed multiple sulfated steroids, of which two were identified as sulfated glucocorticoids, including corticosterone 21-sulfate. Sulfatase-treated urine extracts lost >80% of their activity, indicating that sulfated compounds are the predominant VSN ligands in female mouse urine. As measured by MEA recording, a collection of 31 synthetic sulfated steroids triggered responses 30-fold more frequently than did a similarly sized stimulus set containing the majority of all previously reported VSN ligands. Collectively, VSNs detected all major classes of sulfated steroids, but individual neurons were sensitive to small variations in chemical structure. VSNs from both males and females detected sulfated steroids, but knock-outs for the sensory transduction channel TRPC2 did not detect these compounds. Urine concentrations of the two sulfated glucocorticoids increased many fold in stressed animals, indicating that information about physiological status is encoded by the urine concentration of particular sulfated steroids. These results provide an unprecedented characterization of the signals available for chemical communication among mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual processing of sulfated steroids in the olfactory system of an anuran amphibian

Chemical communication is widespread in amphibians, but if compared to later diverging tetrapods the available functional data is limited. The existing information on the vomeronasal system of anurans is particularly sparse. Amphibians represent a transitional stage in the evolution of the olfactory system. Most species have anatomically separated main and vomeronasal systems, but recent studie...

متن کامل

Functional Overexpression of Vomeronasal Receptors Using a Herpes Simplex Virus Type 1 (HSV-1)-Derived Amplicon

In mice, social behaviors such as mating and aggression are mediated by pheromones and related chemosignals. The vomeronasal organ (VNO) detects olfactory information from other individuals by sensory neurons tuned to respond to specific chemical cues. Receptors expressed by vomeronasal neurons are implicated in selective detection of these cues. Nearly 400 receptor genes have been identified i...

متن کامل

Organization of vomeronasal sensory coding revealed by fast volumetric calcium imaging.

A long-standing goal in neuroscience is to perform exhaustive recording of each neuron in a functional local circuit. To achieve this goal, one promising approach is optical imaging of fluorescent calcium indicators, but typically the tens or hundreds of cells imaged simultaneously comprise only a tiny percentage of the neurons in an intact circuit. Here, we show that a recent innovation, objec...

متن کامل

Responses to sulfated steroids of female mouse vomeronasal sensory neurons.

The rodent vomeronasal organ plays an important role in many social behaviors. Using the calcium imaging technique with the dye fluo-4 we measured intracellular calcium concentration changes induced by the application of sulfated steroids to neurons isolated from the vomeronasal organ of female mice. We found that a mix of 10 sulfated steroids from the androgen, estrogen, pregnanolone, and gluc...

متن کامل

Faecal bile acids are natural ligands of the mouse accessory olfactory system

The accessory olfactory system (AOS) guides behaviours that are important for survival and reproduction, but understanding of AOS function is limited by a lack of identified natural ligands. Here we report that mouse faeces are a robust source of AOS chemosignals and identify bile acids as a class of natural AOS ligands. Single-unit electrophysiological recordings from accessory olfactory bulb ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 25  شماره 

صفحات  -

تاریخ انتشار 2008